Master Embedded Systems

The design of innovative software and hardware is the core of technological and industrial progress. Both the departments of Mathematics and Computer Science and Electrical Engineering play an active role in the development of new, innovative technology. The Master of Science program in Embedded Systems at the TU/e is illustrative of this active role, as it is a co-production of these two departments, awaiting students with a background in computer science, as well as graduates from the field of electrical engineering.

The program rests on a sound theoretical foundation, with an emphasis on the design of quality embedded systems. As a graduate of this program, you will have developed a scientific attitude and an engineering approach to the field. Your position will be the design of embedded systems from a high-level architecture viewpoint, via requirements and behavioral specifications and using platforms, hardware and silicon. You will be able to play a leading role in the development of embedded systems, either in scientific research, in industry or governmental organizations.

The Embedded Systems program focuses on the design of efficient and reliable systems.  To be able to compose dependable protocols for the behavior of such systems, you need knowledge of algorithms, performance, hardware, methods of design and documentation, and an insight into the variability and maintainability of these protocols. All these aspects are addressed in the compulsory part of the program. The Embedded Systems program at the TU/e is offered in close collaboration with Delft University of Technology (TUD) and the University of Twente (UT)  in the context of the 4TU federation: the programs at the three locations share a mandatory common core of 25 EC and jointly offer specialisation courses and homologation modules through tele-lecture and online facilities.

Learning outcomes

Intended learning outcomes of the program:

  1. The graduate has an all-embracing view on embedded systems, their design and their application in systems of various sizes (e.g. from small robots to cyber physical and networked systems) including their evolution over time, demonstrated by an integration approach in system design.

  2. He/she is capable of analysing the functional behaviour of complex embedded systems in a structural way using appropriate abstractions.

  3. He/she is able to describe and study the non-functional aspects of embedded systems, e.g. resource boundedness and dependability.

  4. He/she has a thorough knowledge of state-of-the-art methods and techniques for embedded systems design such as requirements engineering, hardware-software integration, performance modelling and analysis, validation and testing.

  5. He/she is able to design embedded systems that satisfy the functional and non-functional requirements, taking into account the performance of the system during its lifetime. He/she is also aware of costs and environmental issues making optimal use of the available resources.

  6. He/she has the ability and attitude to include other disciplines or involve practitioners of these disciplines in his/her work, where necessary. As an engineer he/she is therefore able to work in a multidisciplinary setting.

  7. He/she is able to conduct research and design independently and has a scientific approach to complex problems and ideas.

  8. He/she possesses intellectual skills that enable him/her to reflect critically, reason and form opinions.

  9. He/she has the ability to communicate the results of his/her learning, thinking and decision-making processes at an international level.

  10. He/she is aware of the temporal and social context of science and technology (comprehension and analysis) and can integrate this context in his scientific work.